STUDY MODULE D	ESCRIPTION FORM	
Name of the module/subject Bridge Fittings		Code 1010102131010100224
Field of study	Profile of study (general academic, practical)	Year /Semester
Civil Engineering Second-cycle Studies	general academic	2/3
Elective path/specialty Bridges and Underground Engineering	Subject offered in: Polish	Course (compulsory, elective) obligatory
Cycle of study:	Form of study (full-time,part-time)	
Second-cycle studies	full-time	
No. of hours		No. of credits
Lecture: - Classes: - Laboratory: -	Project/seminars:	15 1
Status of the course in the study program (Basic, major, other)	(university-wide, from another f	ield)
other	university-wide	
Education areas and fields of science and art		ECTS distribution (number and %)
technical sciences		1 100%

Responsible for subject / lecturer:

mgr inż. Katarzyna Mossor

email: katarzyna.mossor@put.poznan.pl

tel. 6475836

Faculty of Civil and Environmental Engineering

ul. Piotrowo 5 60-965 Poznań

Responsible for subject / lecturer:

mgr inż. Katarzyna Mossor

email: katarzyna.mossor@put.poznan.pl

tel. 6475836

Faculty of Civil and Environmental Engineering

ul. Piotrowo 5 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge concerning bridges design.			
2	Skills	The ability to recognize bridge elements and to appraise their technical state, self-learning skills.			
3	Social competencies	Ability to adapt the type of technical solution to the communication requirements, respect for the Polish language, understanding the need for lifelong learning and group collaboration.			

Assumptions and objectives of the course:

Getting to know in details subjects concerning bridges equipment, proper choice of equipment to assure bridge durability.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student knows the bridge equipment elements, their functions and requirements. [K_W17, K_W07]
- 2. Student knows the current regulations concerning the design of bridge equipment. [K_W17]
- 3. Student knows the current technical solutions as well as the former solutions met in existing bridges. [K W07]

Skills:

- 1. Student can correctly design bridge equipment elements. [K_U03]
- 2. Student can recognize all of the bridge equipment elements and appraise their technical state. [-]

Social competencies:

- 1. Student can adapt the type of technical solution to the communication requirements. [K_K10]
- 2. Student can collaborate and work together in a group, is aware of the need for self-education. [K_K01, K_K06]
- 3. Student complies with the principles of the Polish language and the rules of preparation of technical documentation. [-]

Assessment methods of study outcomes

- 1. Preparation of the design exercise.
- 2. Ongoing monitoring of the student's knowledge on every part of preparation.
- 3. Oral test (talk) on completed project.
- 4. Written test of the student's knowledge in the field of material presented during the lectures.

Faculty of Civil and Environmental Engineering

Course description

- 1. Expansion joints ? types, features, application.
- 2. Drainage elements, the rules of design.
- 3. Isolations? materials, features, application; finishes.
- 4. Road surfaces on bridges.
- 5. Antinoise screens, covers, lighting? types, application.
- 6. Footpaths developments, kerbs, cornice boards? types, application.
- 7. Parapets barriers and banisters ? types, application.
- 8. Equipment providing the access to the bridge? types, application; inspection facilities.
- 9. Elements of railway and tram bridges equipment.

Basic bibliography:

- 1. Arkadiusz Madaj, Witold Wołowicki, Podstawy projektowania budowli mostowych, WKiŁ Warszawa 2003/2007.
- 2. Joanna Łucyk-Ossowska, Wojciech Radomski, Urządzenia dylatacyjne w mostowych obiektach drogowych, WKiŁ, Warszawa 2011.
- 3. Jan Marszałek, Ryszard Chmielewski, Andrzej Wolniewicz, Mosty kolejowe, Wyd. PKP, Warszawa 2010.
- 4. Arkadiusz Madaj, Witold Wołowicki, Budowa i utrzymanie mostów, WKŁ, Warszawa 2007.

Additional bibliography:

- 1. Józef Głomb, Wyposażenie mostów, Wyd. PŚ, Gliwice 1975.
- 2. Arkadiusz Madaj, Witold Wołowicki, Projektowanie mostów betonowych, WKiŁ Warszawa 2010
- 3. Kazimierz Furtak, Mosty zespolone, Wyd. Naukowe PWN, Warszawa 1999.
- 4. Leszek Janusz, Arkadiusz Madaj, Obiekty inżynierskie z blach falistych, WKiŁ, Warszawa 2007.
- 5. Katalog Detali Mostowych, GDDKiA Wydział Mostów, Biuro Projektowo ? Badawcze Dróg i Mostów ?Transprojekt-Warszawa?Sp.z.o., Warszawa 2002.

Result of average student's workload

Activity	Time (working hours)
1. Participation in projects	15
2. Studying	10
3. Project realization	10
4. Preparation to pass the project	10
5. Preparation to the final test	10

Student's workload

Source of workload	hours	ECTS
Total workload	55	1
Contact hours	15	1
Practical activities	10	1